Exact Solutions of the Nonlinear Diffusion Equation u 0 + ∇ [ u − 4 5 ∇ u ] = 0

نویسنده

  • P. Sulewski
چکیده

The symmetry reduction of the equation u 0 +∇ u − 4 5 ∇u = 0 to ordinary differential equations with respect to all subalgebras of rank three of the algebra A E (1) ⊕ AC (3) is carried out. New invariant solutions are constructed for this equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction-diffusion waves with nonlinear boundary conditions

A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method. 1. Formulation of the problem. Reaction-diffusion problems with nonlinear boundary conditions arise in various applications. In physiology, such problems describe in particular development of atheroscle...

متن کامل

Global Solvability and Blow up for the Convective Cahn-hilliard Equations with Concave Potentials

We study initial boundary value problems for the convective Cahn-Hilliard equation ∂tu+ ∂ 4 xu+ u∂xu+ ∂ 2 x(|u| u) = 0. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any p > 0. In contrast to that, we show that the presence of the convective term u∂xu in the Cahn-Hilliard equation prevents blow up at least for 0 < p < 4 9 . We a...

متن کامل

ar X iv : m at h / 06 09 16 1 v 1 [ m at h . A P ] 6 S ep 2 00 6 Blow - up in Nonlinear Heat Equations

We study the blow-up problem for the one-dimensional nonlinear heat equations (or the reaction-diffusion equations) of the form u t = ∂ 2 x u + |u| p−1 u u(x, 0) = u 0 (x) (1) with p > 1. Equation (1) arises in the problem of heat flow and the theory of chemical reactions. Similar equations appear in the motion by mean curvature flow (see [38]), vortex dynamics in superconductors (see [8, 27]),...

متن کامل

From Fast to Very Fast Diffusion in the Nonlinear Heat Equation

We study the asymptotic behavior of the sign-changing solution of the equation ut = ∇·(|u|−α∇u)+f, when the diffusion becomes very fast, i.e. as α ↑ 1. We prove that a solution uα(t) converges in L(Ω), uniformly for t in subsets with compact support in (0, T ), to a solution of ut = ∇·(|u|−1∇u)+f. In contrast with the case of α < 1, we prove that the singularity 0 created in the limiting proble...

متن کامل

Non-local Symmetry of the 3-Dimensional Burgers-Type Equation

Non-local transformation, which connects the 3-dimensional Burgers-type equation with a linear heat equation, is constructed. Via this transformation, nonlinear superposition formulae for solutions are obtained and the conditional non-local symmetry of this equation is studied. The multidimensional generalization of the Burgers equation L1(u) = u0 − u|∇u| − u = 0, (1) is called further the Burg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002